Thanks For Visiting My Blog
Example 1.16
1.
Solve the following logarithms (numbers
greater than 10). a. log 53.2 1 b. log 234,000
2.
Solve the following logarithms (numbers
between 0 and 1). a. log 0.532 b. log 0.00532
Answer :
1. a. log
53.2 = log (5.32 x 10') b. log
234,000 = log (2.34 x 105)
= log 5.32 + log 10' = log 2.34 + log 105
= 0.726 + 1 =
0.369 + 5
= 1.726 =
5.369
2. a. log
0.532 =
log 5.32 x 10' = log 5.32 – 1
= 0.726 – 1 = –0.274
b. log 0.00532 = log 5.32 x 10-3 = log
5.32 – 3 = 0.726 – 3 = –2.274
5. Determining
Antilogarithm of a Number
After learning about the
ways to determine the logarithm of a number, now you will be introduced to the
concept of the antilogarithm ofa number, which is an inverse of the logarithm.
Determining the antilogarithm ofa number means finding a number which is given
its logarithm value using antilogarithm table. To determine antilogarithm of a
number, study the following examples.
Table 1.2 Antilogarithm Table
X
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
00
|
100
|
100
|
101
|
101
|
100
|
101
|
101
|
102
|
102
|
102
|
01
|
102
|
103
|
103
|
103
|
103
|
104
|
104
|
104
|
104
|
104
|
02
|
105
|
105
|
105
|
105
|
106
|
106
|
106
|
106
|
107
|
107
|
03
|
107
|
107
|
108
|
108
|
108
|
108
|
109
|
109
|
109
|
109
|
04
|
110
|
110
|
110
|
110
|
111
|
111
|
111
|
111
|
112
|
112
|
05
|
112
|
112
|
113
|
113
|
113
|
114
|
114
|
114
|
114
|
115
|
06
|
115
|
115
|
115
|
116
|
116
|
116
|
116
|
117
|
117
|
117
|
07
|
117
|
118
|
118
|
118
|
119
|
119
|
119
|
119
|
120
|
120
|
08
|
120
|
121
|
121
|
121
|
121
|
122
|
122
|
122
|
122
|
123
|
09
|
123
|
123
|
124
|
124
|
124
|
124
|
125
|
125
|
125
|
126
|
10
|
126
|
126
|
126
|
127
|
127
|
127
|
128
|
128
|
128
|
129
|
11
|
129
|
, 129
|
129
|
130
|
130
|
130
|
131
|
131
|
131
|
132
|
12
|
132
|
132
|
132
|
133
|
133
|
133
|
134
|
134
|
134
|
135
|
Determine the numbers which satisfy the
following logarithms! a. 0.125 b.
1.412
Answers:
a. Antilog
0.125 = 1.33
From the antilogarithm table, find the
two first decimals in the most left column (column x), that is 12, then
draw a line horizontally from that number to the right until intersect the
column' which
indicates number 5, so you obtain 133.
Because the integer
(characteristic) is 0, thus the antilog 0.125 = 1.33
ALWAYS REMEMBER : http://aakkuucintaindonesia.blogspot.com
thanks gan artikelnya...
ReplyDeletethanks gan artikelnya...
ReplyDelete